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Abstract

We consider a directed walk model of a homopolymer (in two dimensions)
which is self-interacting and can undergo a collapse transition, subject to an
applied tensile force. We review and interpret all the results already in the
literature concerning the case where this force is in the preferred direction of
the walk. We consider the force extension curves at different temperatures as
well as the critical-force temperature curve. We demonstrate that this model
can be analysed rigorously for all key quantities of interest even when there may
not be explicit expressions for these quantities available. We show which of
the techniques available can be extended to the full model, where the force has
components in the preferred direction and the direction perpendicular to this.
Whilst the solution of the generating function is available, its analysis is far
more complicated and not all the rigorous techniques are available. However,
many results can be extracted including the location of the critical point which
gives the general critical-force temperature curve. Lastly, we generalize the
model to a three-dimensional analogue and show that several key properties
can be analysed if the force is restricted to the plane of preferred directions.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The development of atomic force microscopy and optical tweezers has allowed
experimentalists to micro-manipulate individual polymer molecules (e.g., Bemis et al (1999),
Haupt et al (2002), Gunari et al (2007)), and this has led to a considerable body of theoretical
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work describing the response of a polymer to an applied force (e.g., Halperin and Zhulina
(1991), Cooke and Williams (2003), Rosa et al (2003)). Several situations have been
investigated, including pulling a polymer off a surface at which it is adsorbed, pulling a
polymer from a preferred solvent to a less preferred solvent, pulling a copolymer which is
localized at an interface between two immiscible liquids and pulling a collapsed polymer (in a
poor solvent) to an extended form. In this paper we shall be concerned with the latter problem.

The stress–strain curve of a linear polymer in a poor solvent, being pulled in an AFM
experiment, has been measured by several groups (Haupt et al 2002, Gunari et al 2007). The
force–extension curve shows a characteristic plateau. For forces below this critical value the
polymer will be in a collapsed state, while for forces above the critical value the polymer
will be stretched. The plateau region would seem to indicate a first-order phase transition.
Indeed Grassberger and Hsu (2002) have studied self-avoiding walks with nearest-neighbour
attraction and an applied force at low temperatures (poor solvents): they predicted a first-order
phase transition in three dimensions. On the other hand, they see no sign of a first-order
transition in two dimensions.

A well-studied exactly solved model of poor solvent polymers is the self-interacting
partially directed self-avoiding walk model (IPDSAW). We begin our discussion by noting
that a partially directed self-avoiding walk on the square lattice without self-interaction
is intrinsically anisotropic with a preferred direction so that the polymer’s size scales
proportionally to its length, and one perpendicular to this so that the polymer’s size in this
direction scales sub-linearly. As we shall consider the square lattice with the polymer oriented
one way, the preferred direction will be the horizontal direction and the other direction will
be the vertical direction.

In the absence of an applied force the critical point of this model was found by Binder
et al (1990), and is expected to model the polymer collapse transition (or θ -point). The exact
solution of the generating function was found by Brak et al (1992) and its singularity structure
was rigorously elucidated. Prellberg et al (1993) used recurrence relations to generate very
long series to estimate the exponents and the scaling function for the phase transition. A
second-order phase transition similar to the θ -point was found. The tricritical nature of this
transition was described by Owczarek et al (1993) based upon small parameter expansions
and calculations of a related version of the model (see below).

Various calculations were made by Owczarek et al (1993) that are worth noting. First a
semi-continuous version of the model was solved explicitly, building on works by Zwanzig and
Lauritzen (1968, 1970) on a related model, and showed the same tricritical nature (identical
exponents) as the lattice model (from the small parameter expansion and the numerical work
of Prellberg et al (1993)). A later calculation by Prellberg (1995) on the asymptotics of
the generating function of the lattice model of staircase polygons enumerated by perimeter
and area implicitly demonstrated that the scaling function and the exponents were also the
same as in the fully discrete model: the q-Bessel functions involved are the same in the
two lattice models. This was made explicit recently by Owczarek and Prellberg (2007).
The low temperature scaling of the partition function was found by Owczarek (1993) in the
semi-continuous model, and once again this was the same as found by Prellberg et al (1993)
numerically for the fully discrete case. We argue below that the uniform asymptotic expansion
given by Owczarek and Prellberg (2007) implies that they are indeed similar.

Second, Owczarek et al (1993) generalized the fully discrete model to include a parameter
that counts the horizontal span of the walks. The generating function was found by generalizing
the approach of Brak et al (1992) for the no-force case. This added parameter is equivalent
to considering a force applied in the preferred direction. The semi-continuous model also
contained this parameter. In the semi-continuous model it was clear that this parameter did
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not change the nature of the transition. In the discrete model it was also implicit that the
collapse transition was unchanged by this parameter (and confirmed by the work of Prellberg
(1995)), and so unchanged by such an applied force. The connection to an applied force was
however not made explicit in the paper. Rosa et al (2003) studied the model numerically
with the connection made explicit, and added the consideration of the end-to-end distance
scaling function for the discrete model, corroborating the unchanged tricritical nature of the
transition when an applied force in the preferred direction is added. They also plotted the
critical-force-against-temperature curve for the discrete and semi-continuous models. Again
the work of Owczarek and Prellberg (2007) makes this conclusion explicit.

Third, in the appendix of Owczarek et al (1993) a further generalization of the model was
considered and the full generating function of this further generalization evaluated exactly. In
this generalization the parameter for vertical steps was replaced by two parameters: one for
steps in the positive vertical direction and one for steps in the negative vertical direction. No
analysis of this generating function was attempted. We note that a recent paper by Kumar and
Giri (2007) considered pulling in both directions though their focus was on finite size effects
calculated numerically rather than thermodynamic transitions and exact results.

In this paper we make explicit the connection to applying a force in the vertical (non-
preferred) direction of the generalization discussed above. However, we go further and solve
for the generating function along the surface in the parameter space which should include the
transition point. Hence we find an explicit expression for the phase transition point and so are
able to plot exactly the critical force against temperature curve. We also observe that one of
the tricritical exponents is unchanged when this non-preferred force is applied. This indicates,
though does not prove, that the transition may remain second order even in the case of this
type of force. This is a little unexpected as the force must change the end-to-end scaling of the
high temperature phase when pulling in the vertical direction from sub-linear to linear, which
it does not when applied in the horizontal direction.

We also derive functional equations for the generating function and show how the solution
of this general class of problem can be streamlined with this approach.

Before we explain our work on the vertical pulling problem we summarize all the known
results on the horizontal pulling problem making explicit the results in terms of the applied
force. Moreover, we apply the rigorous techniques of Brak et al (1992), which had only been
applied to the case of no applied force, to the horizontal pulling problem. In addition we
discuss the behaviour of the force–extension curves based upon the exact results. Essentially
we bring together all the known results and extend them as necessary for the case of horizontal
pulling of a partially directed polymer in two dimensions.

At the end of this paper we consider a three-dimensional analogue of the model and show
it has similar behaviour to its two-dimensional counterparts.

2. Model and definitions

Consider the square lattice and a self-avoiding walk that has one end fixed at the origin on that
lattice. Now restrict the configurations considered to self-avoiding walks such that starting
at the origin only steps in the (1, 0), (0, 1) and (0,−1) directions are permitted: such a walk
is known as a partially directed self-avoiding walk (PDSAW). For convenience, we consider
walks that have their first step in the horizontal direction. Let the total number of steps in the
walk be n. We label the vertices of the walk i = 0, 1, 2, . . . , n. Let the number of horizontal
steps be nx and the number of vertical steps be ny . To define our model we will need finer
definitions, so let us define ny+ to be the number of (0, 1) steps (positive vertical steps) and
ny− to be the number of (0,−1) steps (negative vertical steps). If the walk starts at the origin
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Figure 1. An example of a partially directed walk (the bold black path) of length n = 21 with
nx = 8, ny+ = 8, and ny− = 5 and having six nearest-neighbour ‘contacts’ (shown as intertwined
(red) curves) so m = 6. The horizontal span is sx = 8, while the vertical span is sy = 3. One end
is fixed at the origin, while forces are applied to the other end (horizontal fx and vertical fy ).

let the position of the other end-point be (sx, sy) so that the span in the horizontal direction is
sx and the span of the walk in the vertical direction is sy . We therefore have

n = nx + ny

= nx + ny+ + ny− (2.1)

and

sx = nx
(2.2)

sy = ny+ − ny− .

An example configuration along with the associated variables of our model is illustrated
in figure 1.

To define our model we add various energies and hence Boltzmann weights to the walk.
First, any two occupied sites of the walk not adjacent in the walk though adjacent on the lattice
are denoted nearest-neighbour contacts or contacts: see figure 1. An energy −J is added for
each such contact. We define a Boltzmann weight ω = eβJ associated with these contacts,
where β = 1/kBT and T is the absolute temperature. Without loss of generality we shall
take the units of energy to be such that J = 1 and therefore ω = eβ , except when we discuss
pulling polymers without any self-interaction (ω = 1) where we will have J = 0.

An external horizontal force fx pulling at the other end of the walk adds a Boltzmann
weight hsx with h = eβfx . An external vertical force fy pulling at the other end of the walk
adds a Boltzmann weight vsy with v = eβfy .

The partition function Zn(fx, fy, β) of the model for walks of length n � 1, where for
later mathematical convenience the first step of the walk is a horizontal step, is

Zn(fx, fy, β) =
∑

ϕ is PDSAW of length n

hsx(ϕ)vsy(ϕ)ωm(ϕ), (2.3)
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where m(ϕ) is the number of nearest-neighbour contacts in the PDSAW, ϕ. The generating
function Ĝ(z;h, v, ω) is

Ĝ(z;h, v, ω) =
∞∑

n=1

Zn(fx, fy, β)zn, (2.4)

so z can be considered as a fugacity for the steps of the walk and the generating function as a
‘generalized partition function’. We shall denote the radius of convergence of Ĝ(z;h, v, ω)

as a function of z as zc(h, v, ω). The mean values of n,m, sx and sy are given by

〈n〉 = z
∂ log Ĝ

∂z
, 〈m〉 = ω

∂ log Ĝ

∂ω
,

〈sx〉 = h
∂ log Ĝ

∂h
, 〈sy〉 = v

∂ log Ĝ

∂v
.

(2.5)

We shall define the number of n-edge partially directed walks with m nearest-neighbour
contacts, horizontal span sx and vertical span sy as dn(sx, sy,m) so that

Zn(fx, fy, β) =
∑

sx ,sy ,m

dn(sx, sy,m)hsx vsy ωm. (2.6)

When v = 1, that is fy = 0, we let

bn(sx,m) =
∑
sy

dn(sx, sy,m), (2.7)

and so bn(sx,m) is the number of n-edge partially directed walks with m nearest-neighbour
contacts and horizontal span sx . So

Zn(fx, 0, β) =
∑
sx ,m

bn(sx,m)hsx ωm. (2.8)

Let the number of partially directed walks of length n be b̄n so that

b̄n =
∑

sx ,sy ,m

dn(sx, sy,m) =
∑
sx ,m

bn(sx,m). (2.9)

It is advantageous when working with the generating function to define different variables.
Let the generating function G(x, y+, y−, ω) be defined as

G(x, y+, y−, ω) =
∞∑

n=1

∑
ϕ

xnx(ϕ)y+
ny+(ϕ)y−ny−(ϕ)ωm(ϕ), (2.10)

where the sum over ϕ is over all PDSAWs of length n. Then making the substitutions

x = hz

y+ = vz (2.11)

y− = z/v

demonstrates that

G(hz, zv, z/v, ω) = Ĝ(z;h, v, ω). (2.12)

Hence we have

Zn(fx, fy, β) = [zn]G(hz, zv, z/v, ω)

= 1

2π i

∮
G(hz, zv, z/v, ω)

dz

zn+1
. (2.13)
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It will be useful to define

q+ = y+ω and q− = y−ω (2.14)

and

q = √
q+q−, (2.15)

and on making the substitutions (2.11)

q = ωz. (2.16)

We define the reduced limiting free energy as

κ(fx, fy, β) = lim
n→∞

1

n
log[Zn(fx, fy, β)] (2.17)

where the existence of the limit can be established by concatenation arguments. The radius of
convergence zc(h, v, ω) can be related to the free energy κ(fx, fy, β) as

κ(fx, fy, β) = −log zc(h, v, ω). (2.18)

It will turn out that there is a single phase transition where the free energy is singular as a
function of β. We shall denote the phase-transition inverse-temperature as βt ≡ βt (fx, fy). In
general a superscript of t implies the critical value of a parameter, e.g., the critical horizontal
force at a fixed temperature and zero vertical force is f t

x ≡ f t
x (0, β). However, we use a

subscript t to denote the critical values of the fugacities. The value of the radius of convergence
of Ĝ(z;h, v, ω) as a function of z at ωt = eβt

is zt
c(h, v) = zc(h, v, ωt (h, v)).

When fy = 0 we shall set y = y+ = y− and so the generating function we need to
consider for the case where there is no vertical stretching force is G(x, y, y, ω), noting that
G(hz, z, z, ω) = Ĝ(z;h, 1, ω), where

Ĝ(z;h, 1, ω) =
∞∑

n=1

Zn(fx, 0, β)zn =
∑

n,sx ,m

bn(sx,m)hsx ωmzn. (2.19)

Note that for fy = 0 we have

q = yω, (2.20)

which agrees with (2.16) when the substitutions (2.11) are made since y = z when
y = y+ = y− (that is, v = 1).

In subsequent calculations it is convenient to define the generating function
Gr(x, y+, y−, ω) for walks that have r vertical steps immediately after the first horizontal
step, where −∞ < r < ∞. It will also be convenient to introduce the generating function
G+

r (x, y+, y−, ω) = Gr(x, y+, y−, ω) for walks that have r � 0 steps after the first horizontal
step in the positive y-direction and G−

r (x, y+, y−, ω) = G−r (x, y+, y−, ω) that have r � 0
steps after the first horizontal step in the negative y-direction. Clearly, G+

0 = G−
0 .

In the functional equation section (section 7) we need

F(p) =
∞∑

r=−∞
Gr(x, y, y, ω)pr , (2.21)

F +(p) =
∞∑

r=0

G+
r (x, y+, y−, ω)pr (2.22)

and

F−(p) =
∞∑

r=1

G−
r (x, y+, y−, ω)pr . (2.23)
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Note the asymmetry of the summation index in the final two definitions. Note that

G(x, y, y, ω) = F(1) =
∞∑

r=−∞
Gr(x, y, ω) (2.24)

and

G(x, y+, y−, ω) = F +(1) + F−(1) =
∞∑

r=−∞
Gr(x, y+, y−, ω). (2.25)

3. Pulling in the preferred direction (fy = 0)

In this section we will begin discussing the case of horizontal pulling force where fy = 0.

3.1. No self-interactions (ω = 1)

Let us begin by considering the case of no interactions and no force so that J = fx = fy = 0.
It is easy to see that limn→∞ n−1 log b̄n = log(1 +

√
2). Let us consider the case of no vertical

force so that fy = 0 and v = 1. As discussed in the previous section we are interested
in the generating function Ĝ(z;h, 1, ω) = G(hz, z, z, ω). As defined above this generating
function converges when z < zc(h, 1, ω). Recall that the free energy κ(fx, 0, β) is given by
κ = −log zc (assuming that the limit defining the free energy exists, which will be proved in
a later section).

When ω = 1 (which corresponds to turning off the vertex–vertex interaction and hence
to good solvent conditions), Ĝ(z; 1, h, 1) satisfies the equation

Ĝ(z;h, 1, 1) = hz(1 + Ĝ(z;h, 1, 1)) +
2hz2

1 − z
(1 + Ĝ(z;h, 1, 1)), (3.1)

so that

1 + Ĝ(z;h, 1, 1) = 1 − z

1 − z − hz − hz2
. (3.2)

From this we can readily calculate the ratio 〈sx〉/〈n〉 and take the thermodynamic limit by
letting z → zc(h, 1, 1) where

zc(h, 1, 1) =
√

h2 + 6h + 1 − 1 − h

2h
. (3.3)

In figure 2 is a plot of limz→zc
〈sx〉/〈n〉 against βfx . Note that the stress–strain curve is

qualitatively the same as that found experimentally for polystyrene in a good solvent (toluene)
(Gunari et al 2007, figure 1).

For ω �= 1 the situation is more difficult and we derive some results about the generating
function in the following sections.

3.2. Convexity and continuity for ω �= 1

In this section we establish the existence of the thermodynamic limit for the canonical problem,
and prove convexity and continuity. This implies continuity of the phase boundary.

It will be convenient to consider a subset of the walks counted by Ĝ(z;h, 1, ω). Let
an(sx,m) be the number of partially directed walks with n edges, m contacts and x-span
equal to sx which satisfy the additional constraint that their last step is in the east direction.
(That is, both the first and last steps are east steps.) These walks can be concatenated by

7
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βfx

li
m

z
→
z c

s x n

Figure 2. The dependence of lim
z→zc

〈sx〉/〈n〉 on βfx when ω = 1.

identifying the last vertex of one walk with the first vertex of the other walk which yields the
inequality

an1+n2(sx,m) �
∑

sx1 ,m1

an1(sx1 ,m1)an2(sx − sx1 ,m − m1). (3.4)

Defining the partition function

An(h, ω) =
∑
sx ,m

an(sx,m)hsx ωm, (3.5)

this implies the super-multiplicative inequality

An1+n2(h, ω) � An1(h, ω)An2(h, ω). (3.6)

Since An(h, ω) � 3nωnhn, it follows that n−1 log An(h, ω) is bounded above for h, ω < ∞.
Hence the super-multiplicative inequality above implies the existence of the limit

lim
n→∞ n−1 log An(h, ω) ≡ κ̃(fx, β) (3.7)

for h, ω < ∞.
We now recall the definition of the partition function

Zn(fx, 0, β) =
∑
m,sx

bn(m, sx)ω
mhsx (3.8)

and define Bn(h, ω) = Zn(fx, 0, β). Since An+1(h, ω) = hBn(h, ω) it follows that

lim
n→∞ n−1 log Bn(h, ω) = κ̃(fx, β) = κ(fx, 0, β) (3.9)

for h, ω < ∞.

8
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To prove that κ(fx, β) is a convex function of β and βfx we note that Hölder’s inequality
implies that(∑

m,sx

bn(m, sx)ω
m
1 h

sx

1

) (∑
m,sx

bn(m, sx)ω
m
2 h

sx

2

)
�

(∑
m,sx

bn(m, sx)(
√

ω1ω2)
m(

√
h1h2)

sx

)2

(3.10)

so that

Bn(h1, ω1)Bn(h2, ω2) � Bn(
√

ω1ω2,
√

h1h2)
2 (3.11)

and hence

n−1 log Bn(h1, ω1) + n−1 log Bn(h2, ω2)

2
� n−1 log Bn(

√
h1h2,

√
ω1ω2). (3.12)

This shows that n−1 log Bn(h, ω) is a convex function of β and βfx . (It is convex as a
surface, not just separately convex in each variable.) Since the limit of a sequence of
convex functions (when it exists) is a convex function, κ(fx, 0, β) is a convex function of
β and βfx . Hence κ(fx, 0, β) is continuous and differentiable almost everywhere. Since
κ(fx, 0, β) = −log zc(h, 1, ω), the singularity surface z = zc(h, 1, ω) is also continuous and
differentiable almost everywhere.

3.3. The generating function for ω �= 1

While the calculation of the generating function for ω �= 1 appears in Owczarek et al (1993)
(see section 4 of that paper) we feel that it is worth summarizing and presenting in a slightly
different way. In order to consider the case ω �= 1 it was necessary to generalize a method
originally due to Temperley (1956) and used for the case h = 1 by Brak et al (1992).

For convenience let the partial generating function Ĝr(z;h, 1, ω) in the case where v = 1
(no vertical force) be denoted as

gr = 2Ĝr(z;h, 1, ω) r � 1, (3.13)

and g0 = Ĝ0(z;h, 1, ω). Now the generating function required is Ĝ(z;h, 1, ω) which is the
sum over all r as

Ĝ(z;h, 1, ω) =
∞∑

r=−∞
Ĝr(z;h, 1, ω). (3.14)

Noting that Ĝ−r (z;h, 1, ω) = Ĝr(z;h, 1, ω), we have the partial generating functions gr

satisfying the relations

g0 = hz + hz(g0 + g1 + · · ·) = hz(1 + Ĝ(z;h, 1, ω)) (3.15)

and

gr = hzr+1

(
2 +

r∑
k=0

(1 + ωk)gk + (1 + ωr)

∞∑
k=r+1

gk

)
, r � 1. (3.16)

See figure 3. These results imply that gr satisfies the recurrence

gr+1 − (z + ωz)gr + ωrhzr+2(ω − 1)gr + ωz2gr−1 = 0. (3.17)

We have q = ωz so that (3.17) becomes

gr+1 − (z + q)gr + qrhz(q − z)gr + qzgr−1 = 0. (3.18)

9
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Figure 3. Walks counted by gr , with r > 0, either contain a single horizontal bond (and so are an
	 or an 
) or can be constructed by appending an 	 or 
 configuration of bonds to a walk counted
by gk . Summing over all these possibilities gives equation (3.16).

This can be solved with the ansatz

gr = λr

∞∑
m=0

pm(q)qmr (3.19)

which is a solution provided that

λ2 − λ(z + q) + qz = 0 (3.20)

and

pm(q) = λhz(z − q)qm

(λqm − q)(λqm − z)
pm−1(q). (3.21)

Since p0(q) = 1 this gives

pm(q) = λmhmzm(z − q)mqm(m+1)/2∏m
k=1(λqk − q)

∏m
k=1(λqk − z)

. (3.22)

The quadratic equation (3.20) has the two solutions λ1 = z and λ2 = q = ωz and the
general solution for gr, r > 0 is

gr = A1g
(1)
r + A2g

(2)
r (3.23)

where

g(i)
r = λr

i + λr
i

∞∑
m=1

λm
i hmzm(z − q)mqm(m+1)/2∏m

k=1(λiqk − q)
∏m

k=1(λiqk − z)
qmr . (3.24)

Arguments similar to those in Brak et al (1992) show that A2 = 0 and A1 can be determined
by noting that

g0 = 1
2A1g

(1)
0 = hz + hzĜ(z;h, 1, ω) (3.25)

10
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and

g1 = A1g
(1)
1 = a + bĜ(z;h, 1, ω), (3.26)

where a = hz2(2 + hz − ωhz) and b = hz2(1 + hz + ω − ωhz). These simultaneous equations
give

Ĝ(z;h, 1, ω) = 2hzg
(1)
1 − ag

(1)
0

bg
(1)
0 − 2hzg

(1)
1

, (3.27)

which can be written as

1 + Ĝ(z;h, 1, ω) = 2hz2(ω − 1)g
(1)
0

bg
(1)
0 − 2hzg

(1)
1

= (ω − 1)g
(1)
0

z(1 + hz + ω − ωhz)g
(1)
0 − 2g

(1)
1

. (3.28)

The solution given by Owczarek et al (1993) was written as

1 + G(x, y, y, ω) = 1 − ω

2(H(y, yω, xy(ω − 1)) − 1) + (1 − ω)(1 − x)
, (3.29)

where

H(y, q, t) = H(y, q, qt)

H(y, q, t)
(3.30)

and

H(y, q, t) =
∞∑

n=0

q(n

2)(−t)n

(y; q)n(q; q)n
. (3.31)

The two forms can be seen to be the same when one notes that

1 + Ĝ(z;h, 1, ω) = 1 + G(hz, z, z, ω)

= 1 − ω

2(H(z, zω, hz2(ω − 1)) − 1) + (1 − ω)(1 − hz)

= ω − 1

(1 + hz + ω − ωhz) − 2H(z, zω, hz2(ω − 1))
(3.32)

and that

H(z, zω, hz2(ω − 1)) = g
(1)
1

zg
(1)
0

. (3.33)

The implications for the singularity diagram of this expression for Ĝ(z;h, 1, ω), and the phase
transitions, will be considered in the following section.

3.4. Solution on the special surface z = 1/ω

Before we proceed to discuss the singularity diagram let us consider the solution on the special
surface defined by q = 1 since the solution described by (3.28) is singular when z = 1/ω

though the generating function is finite for large enough ω.
The recurrence for the partial generating functions becomes

gr+1 + [hz(1 − z) − (1 + z)]gr + zgr−1 = 0, (3.34)

and now the simpler Ansatz of gr = Cμr can be used to find

1 + Ĝ(1/ω;h, 1, ω) =
√(

w2(w − 1)

w(w − h)2 − (w + h)2

)
. (3.35)

When h = 1 we recover the previously calculated result of Brak et al (1992).

11
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4. The phase diagram for a horizontal force

In order to analyse the phase transition structure we need to analyse the form of the singularity
diagram as a function of the ω and h parameters. We derive a functional equation for a slight
generalization of the quantity g(1)

r . We introduce a parameter t and define the function

g(t; q, h, ω) = 1 +
∞∑

m=1

hmω−m
(

1
ω

− 1
)
qm(m+5)/2tm∏m

k=1(1 − qk)(1 − qk/ω)
. (4.1)

Note that g
(1)
1 is equal to zg(tq; q, h, ω) evaluated at t = 1 while g

(1)
0 = g(1; q, h, ω).

The function g(t; q, h, ω) satisfies the functional equation

g(t; q, h, ω) + g(q2t; q, h, ω)/ω = (1 + 1/ω + (1/ω − 1)hq2t/ω)g(qt; q, h, ω). (4.2)

Defining

Ĥ (t; q, h, ω) = g(t; q, h, ω)/g(tq; q, h, ω) (4.3)

gives

Ĥ (t; q, h, ω) = (1 + 1/ω + (1/ω − 1)hq2t/ω) − 1/ω

Ĥ (qt; q, h, ω)
, (4.4)

which leads to a continued fraction representation for Ĥ (t; q, h, ω). Note that

Ĥ (1; q, h, ω) ≡ Ĥ (q, h, ω) = zg
(1)
0

/
g

(1)
1 = 1

H(z, zω, hz2(ω − 1))
(4.5)

and therefore

1 + Ĝ(z;h, 1, ω) = (ω − 1)Ĥ (q, h, ω)

(1 + hz + ω − ωhz)Ĥ (q, h, ω) − 2
. (4.6)

The function Ĥ (q, h, ω) is singular on the hyperbola q = ωz = 1 for all values of h and the
only other singularities in G come from the poles corresponding to the denominator of G being
zero, i.e. determined by the solution of the equation (1 + hz + ω − ωhz)Ĥ (q, h, ω) − 2 = 0.
This line of poles intersects the hyperbola at a point determined by solving the equation
(1 + hz + ω − ωhz)Ĥ (1, h, ω) − 2 = 0, where Ĥ (1, h, ω) is determined by the quadratic
equation

Ĥ (1, h, ω)2 −
[

1 +
1

ω
+

(
1

ω
− 1

)
h

ω

]
Ĥ (1, h, ω) +

1

ω
= 0, (4.7)

which comes from (4.4) on setting q = t = 1. The variables ω and h are related through the
equation

ah2(ω − 1) − 2ω(ω + 1)h + ω3 − ω2 = 0 (4.8)

which implies that the critical value of h is given by

ht = (ω + 1 − 2
√

ω)ω

ω − 1
. (4.9)

Let us consider qc(h, 1, ω) = zc(h, 1, ω)ω. We have that 0 < qc < 1 for 1 � ω <

ωt(h, 1). We have argued that there is a pole in the generating function which means that there
is a zero of D = 1/(1 + G). That is, the function

D(q, ω, h) ≡ [(1 + hq/ω + ω − hq) − 2H(q/ω, q, hq2(ω − 1)/ω2)]

ω − 1
(4.10)

12
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obeys

D(qc, ω, h) = 0. (4.11)

We also have analyticity of H for 0 < q < 1, shown by the ratio test. When ω = 1 there is a
simple pole in the generating function. We have

D(q, 1, h) ≡ 1 − (1 + h)q − hq2

1 − q
(4.12)

and so that
∂D(q, 1, h)

∂q
< 0 (4.13)

at q = qc(h, 1, 1). The derivative is negative for all 0 < q < 1.
We now prove that there is a simple pole for all 1 � ω < ωt(h, 1). For this, we compute

∂D(q, ω, h)

∂q
= − h

ω
− 2

ω − 1

d

dq
H(q/ω, q, hq2(ω − 1)/ω2). (4.14)

Observe that H(y, q, t) is related to the generating function Gsc(x, y, q) of staircase polygons
enumerated by width, height and area. Equations (4.6) and (4.9) of Prellberg and Brak (1995)
imply that

Gsc(x, y, q) = y[H(qy, q, qx) − 1]. (4.15)

It follows that H(q/ω, q, hq2(ω−1)/ω2) is a power series in q with non-negative coefficients.
Therefore, its derivative with respect to q is positive. Hence

∂D(q, ω, h)

∂q
< 0 (4.16)

and therefore there is a simple pole in the generating function at all values of 1 � ω < ωt(h, 1).
Now, using a version of the implicit function theorem that gives analyticity (see chapter 6

of Krantz and Parks (2002)) it follows that qc(h, 1, ω) is an analytic function of both ω and h.
To determine the detailed shape of the part of the phase boundary determined by the poles

of Ĝ we solve the equation (1 + hz + ω − ωhz)Ĥ − 2 = 0 numerically by evaluating H from
its continued fraction expansion. That is, we write Ĥ as

Ĥ (t;ω, h, q) = (1 + 1/ω + (1/ω − 1)hq2t/ω)(1 + β0C), (4.17)

where

C = 1

1 +
β1

1 +
β2

1 +
β3

. . .

(4.18)

and

βk = −1/ω

(1 + 1/ω + (1/ω − 1)hqk+2t/ω)(1 + 1/ω + (1/ω − 1)hqk+3t/ω)
. (4.19)

To evaluate the continued fraction C efficiently we note that if Cm is the truncation of C
at order m then Cm can be written as a rational function whose numerator and denominator
depend on m and are determined by recurrences. This gives a convenient way to evaluate C to
the required accuracy. In figure 4 we show the phase boundaries in the (ω, z)-plane for several
values of h.

13
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zc

ω

Figure 4. The radius of convergence of the generating function as a function of ω when the force
is applied in the x-direction. The rectangular hyperbola is independent of the value of h. The three
curves with points marked correspond to h = 1 (top curve), h = 1.5 and h = 2.0.

5. Extension under a fixed horizontal force

We shall now consider the average extension of the polymer as a function of the applied force
at different temperatures.

From section 3 we know that κ(fx, 0, β) is a continuous function of β and fx . Moreover
for any fixed fx the free energy κ(fx, 0, β) is analytic for 0 < β < ∞ except at at most one
point which we label βt (fx) when it exists. This transition point is defined (see Owczarek and
Prellberg 2007) via

ωt =
(

ωt + h

ωt − h

)2

(5.1)

recalling that h = eβfx . Similarly the free energy κ(fx, 0, β) is an analytic function of fx

except at the solutions of βt (fx, 0) = β. Consideration of equation (5.1) implies there is a
single solution. Let the solution for this ‘critical force’ be labelled f t

x and so by (5.1) it is
given by the function

f t
x = 1

β
log

(
eβ/2 − 1

e−β/2 + e−β

)
, (5.2)

which is the result (11) of Rosa et al (2003). In figure 5 we plot the critical force f t
x against

β−1. We note that for β � βt (0, 0) ≈ 1.218 (equivalently T t ≈ 0.8205) there is no positive
critical force, and that for β > βt(0, 0) there is a single critical force f t

x .
At fixed force and below the critical temperature (which depends on the force), we have

zc(h, 1, ω) = 1/ω and so

κ(fx, 0, β) = β for β � βt (fx, 0). (5.3)

14
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β−1

f t
x

Figure 5. The temperature dependence of the critical force for horizontal pulling in the n → ∞
limit. When the force is less than the critical force the walk is compact and when it is greater than
the critical force it is expanded.

For 0 < β � βt (fx, 0) we know that zc(h, 1, ω) is a strictly decreasing function of β, and so
κ(fx, 0, β) is a strictly increasing function of β. Near the transition we know from Owczarek
and Prellberg (2007) (see the discussion after equation (3.9)) that

κ(fx, 0, β) − β ∼ C(βt − β)3/2 as β → (βt )− (5.4)

and similarly

κ(fx, 0, β) − β ∼ D
(
fx − f t

x

)3/2
as fx → (

f t
x

)+
(5.5)

for some constants C and D.
For 0 < β < βt(fx, 0), the singularity in z closest to the origin in Ĝ(z;h, 1, ω) is a

simple pole. From this we deduce that

Zn(fx, 0, β) = eκ(fx ,0,β)n+O(1) for 0 < β < βt(fx, 0). (5.6)

In the semi-continuous model (Owczarek et al (1993)) the following was derived for the
scaling of the partition function at low temperatures

Zn(fx, 0, β) = eβn+κs (fx ,0,β)n1/2+O(1) for βt (fx, 0) < β, (5.7)

where κs(fx, 0, β) is a negative non-constant analytic function of β and fx , and also we
have that limβ→βt κs(fx, 0, βt ) = 0. Both the discrete model (given explicitly by Owczarek
and Prellberg (2007)) and the semi-continuous model (given by Owczarek et al (1993)) have
generating functions that have uniform asymptotics with the same algebraic structure, given
by a ratio of Airy functions. In particular, the results in Owczarek et al (1993) depend on the
scaling of the locations of the poles in the generating function which has the same scaling in
both cases. Without making the explicit calculation one can surmise that equation (5.7) also
holds for the discrete model.
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For completeness we note that at β = βt (fx, 0) there is an algebraic singularity in
the generating function (see Owczarek and Prellberg (2007)). Assuming the conditions of
Darboux’s theorem hold gives us

Zn(fx, 0, βt (fx, 0)) = eβtn− 2
3 log(n)+O(1). (5.8)

One could calculate the average extension in the generalized ensemble simply by differentiating
the generating function with respect to the force. In the discrete model this gives a complicated
expression in terms of q-Bessel functions and its derivatives. However as the equivalence of
the thermodynamic limits of the canonical ensemble and generalized ensemble is limited to
0 < β � βt it is simpler to use the results above to deduce the behaviour of the average
extension in the canonical ensemble directly. In the canonical ensemble the average extension
〈sx〉n(fx, fy, β) is defined by

〈sx〉n(fx, fy, β) = 1

β

∂ log Zn(fx, fy, β)

∂fx

. (5.9)

Assuming the conditions for differentiating the asymptotic expansion term-by-term hold the
result (5.6) implies that

〈sx〉n(fx, 0, β) = 1

β

∂κ(fx, 0, β)

∂fx

n + O(1) for 0 < β < βt , (5.10)

so that the thermodynamic limit extension per unit length

Sx(fx, fy, β) = lim
n→∞

〈sx〉n(fx, fy, β)

n
(5.11)

is

Sx(fx, 0, β) = 1

β

∂κ(fx, 0, β)

∂fx

> 0 for 0 < β < βt . (5.12)

Moreover the scaling near βt in equation (5.5) as given by Owczarek and Prellberg (2007)
implies that

Sx(fx, 0, β) → 0+ as β → (βt )−. (5.13)

One can calculate this quantity from the generalized ensemble in the semi-continuous model
(see equation (3.46) in Owczarek et al 1993) and analyse it in a more straightforward manner
than in the discrete case (since it involve Bessel functions rather than q-Bessel functions), and
it shows the same behaviour.

On the other hand, the result (5.7) (once again assuming differentiability of the asymptotic
expansion) implies that

〈sx〉n(fx, 0, β) = 1

β

∂κs(fx, 0, β)

∂fx

n1/2 + O(1) for βt < β (5.14)

and so that

Sx(fx, 0, β) = 0 for βt < β. (5.15)

We have calculated the stress–strain curves by computing the free energy from the
boundary of convergence (section 4) and then numerically differentiating. Using these results
and the above arguments we can make the following comments. In all cases the function of
the average extension per unit length Sx(fx, 0, β) is a continuous function of fx for fx � 0.

At high temperatures where β < βt(0, 0) there is no critical force and the average
extension per unit length Sx(0, 0, β) > 0 at zero force. At such fixed β the function
Sx(fx, 0, β) is an analytic function of fx for fx � 0 and is strictly increasing with increasing
force. There is a unit horizontal asymptote, approached from below for large forces. There
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li
m

n
→

∞
s x

n

n

βfx

Figure 6. The dependence of lim
n→∞〈sx〉n/n, the limiting average horizontal span per unit length,

on βfx for different temperatures: at β = βc (upper curve) and at β = log 4 > βc (lower curve).
Note that above the critical temperature the behaviour is qualitatively the same as that shown in
figure 2.

is a finite nonzero slope ∂Sx(fx ,0,β)

∂fx
at fx = 0. The qualitative behaviour is the same as that

shown in figure 2 for the ω = 1 case.
At the critical temperature for zero force β = βt (0, 0) the average extension per unit

length Sx(0, 0, β) = 0 at zero force. Again the function Sx(fx, 0, βt (0, 0)) is an analytic
function of fx for fx > 0, is strictly increasing with increasing force, and has a unit horizontal
asymptote, approached from below for large forces. Now however the slope ∂Sx(fx ,0,βt (0,0))

∂fx

diverges when fx → 0+ as f
−1/2
x . This is shown in figure 6.

At low temperatures where β > βt(0, 0) (so there is a critical force f t
x > 0) there are two

regimes. For 0 � fx � f t
x the average extension per unit length Sx(fx, 0, β) = 0 regardless

of the force. However for f t
x < fx the function Sx(fx, 0, β) is an analytic function of fx , is

strictly increasing with increasing force, and has a unit horizontal asymptote, approached from
below for large forces. Again the slope ∂Sx(fx ,0,β)

∂fx
diverges when fx → (

f t
x

)+
as

(
fx −f t

x

)−1/2
.

This is illustrated in figure 6.

6. The full model: pulling in both directions

6.1. No self-interactions (ω = 1)

As in subsection 3.1 which describes the solution when there is no vertical pulling (and no
self-interactions) one can write down a simple functional equation for the generating function
G(x, y+, y−, 1) as

G(x, y+, y−, 1) = x

(
1 +

y+

1 − y+
+

y−
1 − y−

)
(1 + G(x, y+, y−, 1)) (6.1)
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βfy

lim
z→zc

sy
n

Figure 7. A plot of lim
z→zc

〈sy〉/〈n〉 when ω = 1 against βfy .

so that

1 + G(x, y+, y−, 1) = 1

1 − x
1−y+y−

(1−y+)(1−y−)

, (6.2)

and setting x = hz, y+ = zv and y− = z/v we get

1 + Ĝ(z;h, v, 1) = 1

1 − hz
[

1−z2

1−(v+v−1)z+z2

] . (6.3)

So the answer is a simple rational function, and the critical z (that is zc(h, v, 1)) is the root of
a cubic. For h = v = 1 this simplifies as expected.

If we set fx = 0 then

1 + Ĝ(z; 1, v, 1) = 1

1 − z
[

1−z2

1−(v+v−1)z+z2

] , (6.4)

and from this we can readily calculate the ratio 〈sy〉/〈n〉 and take the thermodynamic limit by
letting z → zc(1, v, 1). In figure 7 is a plot of limz→zc

〈sy〉/〈n〉 against βfy .

6.2. Solution of the full model

In the appendix of Owczarek et al (1993) it was shown that if one adds fugacity variables y+

for steps in the positive vertical direction and y− for steps in the negative vertical direction
then a generalization of the method for solving the standard problem yields the generating
function G(x, y+, y−, ω) as described in section 2. Using q+ = y+ω and q− = y−ω it is given
by

1 + G(x, y+, y−, ω) = (1 − ω)

[2H̄(x, y+, y−, ω) − (1 + ω + (1 − ω)x)]
, (6.5)

18



J. Phys. A: Math. Theor. 42 (2009) 085001 R Brak et al

where

H̄(x, y+, y−, ω) =
(
A+

0 + B+
0

)(
A+

1 − B+
1

) − (
A−

0 + B−
0

)(
A−

1 − B−
1

)
(
A+

0 + B+
0

)(
A+

0 − B+
0

) − (
A−

0 + B−
0

)(
A−

0 − B−
0

) , (6.6)

with

A±
r =

∞∑
m=0

x2m(ω − 1)2m(q+q−)m(m+r)q±m∏m
k=1 P [(q+q−)k−1q±]P [(q+q−)k]

, (6.7)

B±
r =

∞∑
m=0

x2m+1(ω − 1)2m+1(q+q−)m(m+r)q±r+m+1

P [(q+q−)mq±]
∏m

k=1 P [(q+q−)k−1q±]P [(q+q−)k]
(6.8)

and

P [λ] = (λ − 1)(λ − ω). (6.9)

Note that q+q− = q2, and given that all the parameters are positive we have q = √
q+q−. This

solution is then a clear generalization of the form for the horizontal pulling model where

1 + G(x, y, y, ω) = 1 − ω

[2H(y, yω, xy(ω − 1)) − (1 + ω + (1 − ω)x)]
, (6.10)

where H(y, q, t) = H(y, q, qt)/H(y, q, t) is given in terms of H(y, q, t) defined by
equation (3.31).

However the problem of generalizing the analysis of Prellberg (1995) is a daunting one.
On the other hand we can still make some deductions about the behaviour of the generating
function. Since the partition function is positive we know that Ĝ(z;h, v, ω) is a strictly
increasing function of z for fixed h, v, ω > 0.

Let us consider ω � 1. The functions A±
r and B±

r converge whenever q < 1 and moreover
there are singularities when |q| = 1. The solution for the generating function G(x, y+, y−, ω)

is given in the following section and one finds that G(x, y+, y−, ω) on this surface is finite
when ω > ωt , where ωt is given by the solution of equation (6.27). The only singularities that
can occur in the generating function for q < 1 are poles occurring when the denominator of
(6.5) is zero. The nature of these poles is unclear but we conjecture that they are simple poles
and that they only exist when ω < ωt .

6.3. Solving the full model on the special surface z = 1/ω

While expression (6.6) is rather unwieldy, it is possible to find a sub-manifold of parameters
for which the solution can be made more explicit. If we restrict to

q+q− = q2 = 1 that is q = ωz = 1, (6.11)

then (6.6) has a singular limit. This is analogous to the fact that in the case of (6.10) one
obtains an algebraic function for q = 1.

Hence we have q+ = v and q− = 1/v. Also, we shall retain the variable x for convenience
during the calculations before substituting x = h/ω as required in the final expressions.

Let g±
r = y±−rG±

r where G±
r is the generating function for walks with r steps in the

positive and negative directions respectively, and we have in analogy with the derivation of
the full problem

g±
r+4 − (ω + 1)(q± + 1)g±

r+3 + (ω(1 + q±2) + (ω + 1)2q±)g±
r+2

−ωq±(ω + 1)(q± + 1)g±
r+1 + ω2q±2g±

r = q±x2(ω − 1)2g±
r+2. (6.12)
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The characteristic polynomial is

P±(λ) = (λ − 1)(λ − ω)(λ − q±)(λ − q±ω) − q±x2(ω − 1)2λ2. (6.13)

Despite being a polynomial of degree four, P±(λ) has sufficient symmetry to allow for simple
explicit solutions. The key observation is that if λ is a root of P±(λ), then so is q±ω/λ. If we
define

μ± = λ +
ωq±
λ

, (6.14)

then μ± satisfies

μ2
± − (ω + 1)(q± + 1)μ± + (ω + q±)(1 + ωq±) − x2(ω − 1)2 = 0. (6.15)

We can therefore obtain all four roots of P±(λ) by solving the quadratic equation (6.15) for
μ±, followed by solving the quadratic equation (6.14) for λ.

The general solution for (6.12) is a linear combination

g±
r =

4∑
i=1

Aiλ
r
±,i respectively G±

r = y±r

4∑
i=1

Aiλ
r
i . (6.16)

After some algebra the generating function 1+Ĝ(1/ω;h, v, ω) = G(h/ω, v/ω, 1/vω, ω) can
be found to be

1 + Ĝ(1/ω;h, v, ω) = (t1t2ω − 1)(t1v − 1)(t2v − 1)(ω − 1)ω2

D(t1, t2)
, (6.17)

where

D(t1, t2) = t1t2(ω − 1)2h2 + (ω − 1)(t1t2v − 1)(t1t2ωv − 1)hω

− (t1 − 1)(t1v − 1)(t2 − 1)(t2v − 1)ω3 (6.18)

with t1 and t2 the two distinct roots of L(t) = 0 with

L(t) = vh2(ω − 1)2t2 − (t − 1)(ωt − 1)(vt − 1)(ωvt − 1)ω2. (6.19)

We note that L(t) is a quartic polynomial in t. If we let

s = 1

t
+ vωt (6.20)

then s satisfies

s2 − (ω + 1)(v + 1)s + (ω + v)(1 + ωv) = vh2 (ω − 1)2

ω2
, (6.21)

and the two solutions of this equation are

s± = (ω + 1)(v + 1) ±
√

(ω − 1)2(v2 − 2v + 1 + 4vh2/ω2)

2
. (6.22)

Now only one of the solutions of (6.20) is applicable, namely

t = s − √
s2 − 4vω

2vω
(6.23)

which gives us that

t1 = s+ − √
s2

+ − 4vω

2vω
(6.24)

and

t2 =
s− −

√
s2− − 4vω

2vω
. (6.25)
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Importantly, on substitution into the generating function the denominator can be found to be
a polynomial with a factor

(vω2 + 2hωv + vh2 − 2vh2ω + ω4v − 2hω3v + vh2ω2 − ω3 − v2ω3) (6.26)

and no other relevant factors. Hence the generating function is singular on the curve q = 1
when this factor is zero. It can be seen that the algebraic singularity (a square root) occurs
in the generating function at the same place by considering the discriminant of (6.13). It can
therefore be deduced that the exponent γu = 1/2 describing the singularity in the generating
function approaching the transition point tangentially (as described in Owczarek et al 1993).
The exponent is independent of the values of h and v and so of whether there is a horizontal
and/or vertical pulling force.

We therefore have the location of the critical point as

ω2(1 + ω2) + 2ω(1 − ω2)h + (1 − ω)2h2 = ω3(v + 1/v). (6.27)

One can rewrite this as

cosh(βfy/2) = exp(−β/2) cosh(β) − exp(−β) sinh(β/2)(exp(βfx) − 1). (6.28)

When there is no horizontal force, that is, h = 1, we therefore find the critical point to be
when

(ω2 + 1)2 =
(

v + 2 +
1

v

)
ω3, (6.29)

which reduces to the known result of Binder et al (1990) when v = 1. From this equation the
critical force temperature plot can be found as

f t
y = β−1 cosh−1(2e−β cosh2(β) − 1). (6.30)

In figure 8 we plot the critical force against temperature for vertical pulling. Note that as the
temperature approaches the critical value for no pulling force the slope of this curve diverges
in contrast to the analogous horizontal pulling curve.

Note that when v = 1 in (6.27) we find equation (5.1) that was derived in a previous
section.

7. Functional equation method

7.1. Horizontal pulling

For the case of horizontal pulling we can construct a recursive functional equation for the
partial generating function, cf section 2. Let us define

gr(x, y, ω) =
{

2Gr(x, y, y, ω) if r � 1
G0(x, y, y, ω) if r = 0

(7.1)

so that

F(p) =
∑
r�0

grp
r . (7.2)

The functional equation is constructed by considering what happens when an extra column
is added to the left of a walk. Let Pr be the set of all paths with at least one horizontal step
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β−1

f t
y

Figure 8. The temperature dependence of the critical force for vertical pulling in the n → ∞
limit.

followed by r � 0 first column vertical steps. Let r ′ be the number of second column vertical
steps. We can partition Pr into the following five disjoint subsets.

Case I. The walk has only one step. This is generated by x.

Case II. These are all walks with only one horizontal step and at least one first column vertical
step. These are generated by 2xyp/(1 − yp), the factor of two giving all upwards and all
downwards sequences of steps, both generated by yp/(1 − yp).

Case III. These are all paths with at least two horizontal steps and the first column vertical
steps (if any) are in the same direction to the second column vertical steps (if any). These are
generated by xF(1)/(1 − yp). There is no factor of two for the following reason. The product
xF(1)/(1 − yp) corresponds to concatenating a sequence of vertical steps, V → 1/(1 − yp)

to an arbitrary path F(1). The generating variable p is set to one in F(p) since the leftmost
vertical steps arise from the V sequence. If the first vertical sequence of steps of F(1) are
upwards, then the V steps are interpreted as also being upwards (and hence no contacts are
created by the concatenation, thus no ω factor). If the first vertical sequence of steps of F(1)

are downwards, then the V steps are interpreted as also being downwards (and again, no
contacts are created by the concatenation).

Case IV. These are all paths with at least two horizontal steps and 0 < r � r ′ and with the
further condition that the vertical steps in the first column are in the opposite direction to
those in the second column. These are generated by xypF(ωyp)/(1 − yp). The argument for
this form is similar to that of Case III, except now contacts are created by the concatenation.
The contacts are accounted for as follows. All new contacts occur in the overlap between
the first and second columns. Since the p in F(p) tracks the number of vertical steps in the
second column, the new contacts can be accounted for by replacing p by ωp. The factor of
yp in F(ωyp) is interpreted as giving rise to first r ′ vertical steps in the first column (these
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Figure 9. Schematic representation of the terms of the functional equation (7.3) arising from the
five cases described in section 7.1.

Figure 10. Schematic representation of contribution of Case V to the functional equation.

can be thought of as ‘virtual steps’) and the remaining r ′ − r vertical steps are generated by
1/(1 − yp) and are interpreted as being concatenated on to the virtual steps, as illustrated by
the fourth term in figure 9.

Case V. These are all paths with at least two horizontal steps and 0 < r ′ � r and with the
further condition that vertical steps in the first column are in the opposite direction to those
in the second column. These are generated by xωyp[F(1) − F(ωyp)]/(1 − ωyp) which can
be shown using inclusion–exclusion. The term xωyp/(1 − ωyp) counts an infinite sequence
of vertical bonds and contacts. So the generating function, T1 = xωypF(1)/(1 − ωyp),
counts all the required configurations, but also those with r ′ > r . The contribution of these
over-counted configurations is then given by T2 = xωypF(ωyp)/(1 − ωyp). Hence the
contribution of this case is T1 − T2. See figure 10.

Combining all five cases together, as illustrated in figure 9, generates all the walks. Thus
we get

F(p) = x + 2x
yp

1 − yp
+ x

1

1 − yp
F(1) + x

yp

1 − yp
F(ωyp) + x

ωyp

1 − ωyp
[F(1) − F(ωyp)].

(7.3)

This functional equation can be solved for F(p) by the method of iteration (Bousquet-Mélou
1996).
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The case ωy = 1 is much simpler to solve. Letting ωy = 1 gives

F(p) = x + 2x
yp

1 − yp
+ x

1

1 − yp
F(1) + x

yp

1 − yp
F(p) + x

p

1 − p
[F(1) − F(p)]. (7.4)

Note, to find F(1) from equation (7.4) we cannot put p = 1 because of the denominator 1−p.
To avoid this problem, first collect coefficients of F(p) to give

K(p)F (p) = x(1 − p)(1 + yp) + x(1 − yp2)F (1) (7.5)

where the ‘kernel’, K(p), is given by

K(p) = yp2 − (1 − x + y + xy)p + 1. (7.6)

If we can put K(p) = 0 in (7.5) then, since the left-hand side is zero, we can solve for
F(1). Note, the condition K(p) = 0 implicitly constrains p, which, since K(p) is quadratic
in p, implies that we get two possible functions p±(x, y). However some care must be
taken as this way of finding F(p) assumes F(p)K(p) = 0 which is only the case if
limp→p± F(p)K(p) = 0. Thus, we first assume this is the case for one of the solutions,
say p+ and then verify this assumption once F(p) has been explicitly computed. As is readily
shown, each of the two assumptions limp→p+ F(p)K(p) = 0 and limp→p− F(p)K(p) = 0
gives rise to different functions, denoted F±(p). In fact, F(p) is an algebraic function and
each of the two functions F±(p) is the two branches of F(p). The limit limp→p+ F(p)K(p)

only vanishes if the correct branch is combined with the correct limit (the other branch has a
pole at p+ and hence the limit is the non-zero residue of F(p) at p+).

Thus, assuming limp→p+ F+(p)K(p) = 0 and taking the limit as p → p+ on both sides
of (7.5) gives F+(1). Thus we obtain the branch F+(1) on the line ωy = 1 as

F+(1) = − (1 − p+)(1 + p+y)

1 − p2
+y

(7.7)

or, explicitly

1 + F+(1) =
√

y − 1

x2(y − 1) + 2x(y + 1) + y − 1
. (7.8)

Using this solution, one then verifies the assumption that limp→p+ F+(p)K(p) = 0. This
solution has a square root singularity at

x2(y − 1) + 2x(y + 1) + y − 1 = 0, (7.9)

which gives the same critical value of x, xc as given by equation (5.1) using the transformations
x = h/ω and y = 1/ω. Thus we see that, using this method, xc arises via p+ and hence from
the kernel.

The functional equation (7.3) is also closely linked to the recurrence relation (3.16). If
we make the substitution (2.21) into (7.3) and equate coefficients of p, then, for r > 0 we get

gr = xyr+1

⎛
⎝2 +

∑
k�0

gk +
r−1∑
k=0

ωkgk + ωr
∑
κ�0

gk − ωr

r−1∑
k=0

gk

⎞
⎠ (7.10)

which is readily put in the same form as (3.16).

7.2. Vertical pulling

Let us define

F̂ +(p) =
∞∑

r=0

G+
r (x, vy, y/v, ω)pr (7.11)

24



J. Phys. A: Math. Theor. 42 (2009) 085001 R Brak et al

and

F̂−(p) =
∞∑

r=1

G−
r (x, y/v̄, yv̄, ω)pr . (7.12)

Using similar arguments to the derivation of equation (7.3) we obtain the following pair
of coupled equations.

F̂ +(p) = x + xv
ypv

1 − ypv
+ x

1

1 − yp
F̂ +(1) + x

ypv

1 − ypv
F̂−(ωypv)

+ x
ωypv

1 − ypωv
[F̂−(1) − F̂−(ωypv)] (7.13)

and

F̂−(p) = x
ypv̄

1 − ypv̄
+ x

1

1 − ypv̄
F̂−(1) + x

ypv̄

1 − ypv̄
F̂ +(ωypv̄)

+ x
ωypv̄

1 − ωypv̄
[F̂ +(1) − F̂ +(ωypv̄)]. (7.14)

These equations can again be solved by the method of iteration, resulting in complex
q-series similar to (6.6).

There is also the simple case occurring when ωy = 1. Using the notation

L′(a) = 1

1 − a
, L(a) = aL′(a) and �L(a) = L(ya) − L(a),

we can write the two functional equations as

F
+
(p) = 1 + L(ypv) + L′(ypv)F

+
(1) + L(ypv)F

−
(pv) + L(pv)[F

−
(1) − F

−
(pv)]

(7.15)

and

F
−
(p) = L(ypv̄) + L′(ypv̄)F

−
(1) + L(ypv̄)F

+
(pv̄) + L(pv)[F

+
(1) − F

+
(pv̄)], (7.16)

where

xF
+ = F̂ +|ωy=1 and xF

− = F̂−|ωy=1.

Solving the two equations for F
+
(p) and F

−
(p) gives the pair

K+(p, v)F
+
(p) = 1 + L(ypv) + xL(yp)�L(pv) + [L′(ypv) + xL(p)�L(pv)]F

+
(1)

+ [L(pv) + xL′(yp)�L(pv)]F
−
(1) (7.17)

and

K−(p, v)F
−
(s) = L(ypv̄) + xL(yp)�L(pv̄)[1 + L(yp)]

+ [L′(ypv̄) + xL(p)�L(pv̄)]F
−
(1)

+ [L(pv̄) + xL′(yp)�L(pv̄)]F
+
(1), (7.18)

where the two kernels are given by

K+(p, v) = (1 − p)(1 − yp)(1 − pv)(1 − ypv) − x2p2v(y − 1)2 (7.19)

K−(p, v) = K+(p, v̄). (7.20)

Thus we choose p such that

K−(p(v), v) = K+(p(v̄), v̄) = 0, (7.21)

which is the same equation as the characteristic equation (6.13) with p → λ and y replaced by
1/ω. Thus we see that the kernel that arises from the functional equation approach corresponds
to the characteristic equation (6.13) required to solve the Temperley recurrence relations (6.12).
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8. Three-dimensional model

The model can be generalized to a three-dimensional partially directed walk model in which
the walk is self-avoiding, can take steps in the +x- or +y-directions or in the ±z-directions.
Again it will be convenient to require that the first step is in the +x- or +y-direction. We shall
only consider a force applied in the (x, y)-plane and as such we shall keep track of the span
in the x- and y-directions as well as the number of contacts.

If we write cn for the number of these walks with n steps it is easy to see that

lim
n→∞ n−1 log cn = log[(3 +

√
17)/2]. (8.1)

Suppose that cn(sx, sy,m) is the number of walks with n steps, m contacts, and with spans sx

and sy in the x- and y-directions. The corresponding canonical partition function is

Zn(hx, hy, ω) =
∑

sx ,sy ,m

cn(sx, sy,m)hsx

x h
sy

y ωm (8.2)

and we define the generating function

Ĝ(z;hx, hy, ω) =
∑

n

Zn(hx, hy, ω)zn. (8.3)

Concatenation arguments can be used, as in section 3, to establish the existence of the
limiting free energy

κ(hx, hy, ω) = lim
n→∞ n−1 log Zn(hx, hy, ω). (8.4)

Methods exactly analogous to those in section 3 can be used to show that κ(hx, hy, ω) is convex
and continuous, and differentiable almost everywhere. At fixed ω, hx and hyG converges if
z < zc(hx, hy, ω) = exp[−κ(hx, hy, ω)], and the phase boundary z = zc is continuous.

If we turn off the interactions by setting ω = 1 and write G0 ≡ G(z;hx, hy, 1) then G0

satisfies the equation

G0 = (hx + hy)(G0 + 1)z +
2z2(hx + hy)

1 − z
(G0 + 1) (8.5)

so that

1 + G0 = 1 − z

1 − z − z(z + 1)(hx + hy)
. (8.6)

The force–extension curve can be calculated as in section 3 and this has the same general form
as for the two-dimensional model, and as found experimentally for good solvent conditions
(Gunari et al 2007).

For attractive interactions (ω > 1) the Temperley approach described in section 3 for
the two-dimensional case immediately generalizes to this model. Defining partial generating
functions as in section 2, the partial generating functions obey the relations

g0 = (hx + hy)z(1 + G) (8.7)

and

gr = (hx + hy)z
r+1

(
2 +

r∑
k=0

(1 + ωk)gk + (1 + ωr)
∑
k>r

gk

)
, (8.8)

so that gr satisfies the relation

gr+1 − (z + q)gr + qr(hx + hy)z(q − z)gr + qzgr−1 = 0 (8.9)

with q = ωz.
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f t
x

β−1

Figure 11. The temperature dependence of the critical force for the three-dimensional model in
the n → ∞ limit when the force is applied in the x-direction.

The analysis goes through as in section 3 and one can find the temperature dependence
of the critical force. By choosing the relative magnitudes of hx and hy one can change the
direction in the (x, y)-plane in which the force is applied. In all cases the force–temperature
curve is monotonic and does not show reentrance. Presumably this is because the model does
not have extensive ground state entropy. The phase diagram can also be calculated, using the
same methods as in section 3, with qualitatively similar results.

If we set hy = 0 we reproduce the results of section 3. We consider two other cases. First
we set hx = h and hy = 1. This corresponds to applying a force in the x-direction. We show
the critical force–temperature curve in figure 11 and the boundary of convergence in figure 12.

These are qualitatively similar to the corresponding figures for horizontal pulling in two
dimensions, though with quantitative differences, of course. In particular, the critical force–
temperature curve has zero slope in the T → 0 limit and is monotone decreasing. We also set
hx = hy = h which corresponds to pulling in the xy-plane but at 45◦ to the x-axis. We show
the critical force–temperature curve in figure 13 and the boundary of convergence in figure 14.

The critical force now has negative limiting slope in the T → 0 limit but remains
monotone decreasing. This is because of the curious feature of this model that the ground
state has no (extensive) entropy in the compact state but acquires entropy under the influence
of a force. The low temperature behaviour can be understood by the following crude low
temperature argument. Think of an n-edge walk at low temperature T under a tensile force f

at 45◦ to the x-axis. If n − m edges of the walk are in a compact state and the remaining m
edges are extended the (extensive) free energy can be written as

F = (n − m)ε − f m − T m log 2, (8.10)

where ε < 0 is the vertex–vertex attractive energy. Differentiating with respect to m and
setting the derivative equal to zero gives

f = −ε − T log 2. (8.11)
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z

ω

Figure 12. The boundary of convergence of the generating function as a function of ω for the
three-dimensional model when the force is applied in the x-direction. The rectangular hyperbola
is independent of the value of hx . The three curves with points marked correspond to hx = 1 (top
curve), hx = 1.2 and hx = 1.5.

f t

β−1

Figure 13. The temperature dependence of the critical force for the three-dimensional model in
the n → ∞ limit when the force is applied in the xy-plane at 45◦ to the x-axis.

Setting ε = −1 gives a critical force of 1 at T = 0 and the limiting slope df/dT =
−log 2 < 0.
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z

ω

Figure 14. The boundary of convergence of the generating function as a function of ω for the three-
dimensional model when the force is applied in the xy-plane at 45◦ to the x-axis. The rectangular
hyperbola is independent of the value of hx = hy . The three curves with points marked correspond
to hx = hy = 1 (top curve), hx = hy = 1.2 and hx = hy = 1.5.

9. Discussion

We have analysed the polymer model of partially directed walks with self-interaction, so as to
induce a collapse transition, under the influence of tensile forces on the ends of the polymer.
The problem of forces only in the preferred direction of the walk can be elucidated completely.
The phase transition which is a second-order transition without any force is unchanged by the
presence of such a force. The force extension curves at high temperatures look qualitatively
similar to those of AFM experiments (Gunari et al (2007)).

The solution of the full model is more problematic. While the exact solution of the
generating function of partition functions can be written down in terms of q-series, these
functions are even more complicated than those encountered in the standard model that has
only forces in the preferred direction (those are q-Bessel functions). We have been able to
solve the model on the important special curve in parameter space which should contain the
transition point. This seems to indicate that, again, the transition is unaffected by the force.
This is more difficult to understand physically as the force must change the high temperature
state of the polymer, unlike a force applied only in the preferred direction. It would therefore
be interesting to analyse this full model further.
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